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We propose a method that uses fourth order accurate staggered mesh compact differences
for the momentum equations, and a fourth order accurate integral type finite volume scheme
adiate haimdary con

for the continuity equation, describe a new set of intermediate boundary counditions of the
Runge-Kutta method, its accuracy is one order higher than that of the conventional method.
For a 2D traveling wave calculation, its numerical results are much better than those of the
conventional method. Calculation results for a scalar equation and a 2D traveling wave flow
and a square driven cavity(Re=100) show fourth order accuracy of the staggered mesh compact
scheme. Numerical results in the square driven cavity are obtained for Re=1000,7500 as well as
Re=100. We get steady solutions for Re=7500. Our numerical results support the conclusion
that the Hopf bifurcation point R, is not lower than 7500.
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1. INTRODUCTION

We consider the compact difference schemes that use not only values of the function
itself. but also those of its derivatives il e LLE[L71[14][6] Mh o ars ~F rdan
1LdCILL, Uub alSO TroOSEe O1 1S d€érivativeés aS UNKIIOWIIS.t v v e 11ITYy alc Ul 111511 oraer

accuracy with less grid points, a better stability, a better resolution for high frequency
waves, and fewer boundary difference points than traditional methods. One application
is the direct numerical simulation (DNS) of model turbulent flows, which is very difficult
to simulate, requires all the relevant scales to be properly represented in the numerical
method. [1 ’%][14] applied compact schemes to the DNS, obtained good results.

Liu[“] constructed a compact scheme according to [5], applied it to smmlating the
Adcrnn Ay s 14 MR RN P DN Lo frasiond Acmillatlina :iaan +1 A AL i A e
Urivell 11ow plUUlUlll 111 UIIEC bdllbuld,l/lUll ¢ 10uia Ubbllld,l/lUllb 11cal l/llti Ull/ uppcr coul-
ner. When Re much larger, there were oscillations near a lower corner too, so that the
computations could not keep on. This shows that the central difference regular grid
compact scheme produces non—physical numerical oscillations at where flow parameter
varies acutely. Hel' applied an upwind technique to the non-staggered mesh compact

difference scheme to solve the incompressible flow, solved the above oscillations problem

1clrcliic H1CIIIC L0 S FRS N Rea i 2 SULVECL LIIC ADOVE OSC1LT

b

successfully.
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We use the staggered mesh compact schemel'? which does not produce the above
oscillations in the same calculations of the driven flow problem without using the upwind
technique. The three—point central difference scheme is of the fourth order accuracy,
while the Upw wind three— puulu compact scheme is of third order accuracy . Th /
good qualities of the staggered mesh method.

We propose a method that uses the fourth order accurate staggered mesh compact
differences ( which we presented in [8],[12]) for the momentum equations(§3), and uses
an integral type finite volume scheme for the continuity equation(§2). The driven flow
problem in a square cavity with Re=7500 is calculated. We get steady solutions, while

some other authors got unsteady results[ J,

—
A

variables Veloc1ty and pressure are:

ad—‘t/—l-A(V)—l-VD—O in Q, (where A(V)= (V. -V)V -vV?*V) (1.1)

The continuity equation for incompressible fluid flows is:
divV =0, in{ (V = (u,v)" for a 2D case ) (1.2)

/a4

We consider an explicit discrete form of (1.1)(1.2):

n+l *
u_l_w'n 1:(\ ( whore V* — /1 _ ‘f‘A(/n\\ (1 2)
At ] v nt’ U’ \ yviivio v v U-‘.I.n\ / /, \L-U/
div, V"t =0, (V" = (" " for a 2D case ), (1.4)

here it is the first order accurate for the time discretization.

Since unsteady phenomenon is concerned, it is necessary to approximate the time
derivative with high order accuracy. We use the fourth order accurate Runge-Kutta
method for unsteady problems, see §4.

2. AN INTEGRAL TYPE FINITE VOLUME SCHEME FOR THE
CONTINUITY EQUATION

LA A ANS

Py P, -..,\,‘,\4..

In “§5 of [8)” we have pointed out that such appro ,
staggered mesh compact difference for momentum equations, and the integral type scheme
“(5.2)(5.1) of [8]” for the continuity equation), is another fourth order accurate difference
scheme as well as the compact schemes (for all equations) presented in [8].

Now we describe the integral type finite volume scheme (i. e.,(2.3)-(2.5) below) for

the continuity equation (1.2) on Q = (0, L*) x (0, LY). Consider a uniform grid. Az =
L IN Aoy — TY /A Tntooratine (19 an » — ((s 1\/\00 AP s ({3 1YAar s A roanlia
/.Lv,uy vy /.LVJ. lllUb&LwUlllB \L.AI} vliL U \\l/ L}HJJ, 0uw} A \\J L}Hy,JH } LruvouLuvo
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where Oe is the boundary of e, V' = (u,v)?, n is the outward normal vector on e. Set

_ 1 JAy ‘A q B 1 1A Ag)d 59
uiaj—% - A_?,//(;' A U(Z x,y) Y, Uil = AT/ DAz («T,] Z/) €T, ( . )

—1)An 27
Y

then (2.1) can be written by

+ 5 ] o 0 1 S ) S N /2 3\
Az Ay 7 1<j<M \5:9)
The following approximations are fourth order accurate
_ 1 1<i<N-1
uz7]_§ — ul,j—% + ﬂ(u%]_% —271% 1 +ul]+2) QEJ_SM—]_ (2.4)1
= o | 1/,h. , 9., Lo \ 2<i<N-1 9 A4\
Vimgd T Vimgd g \Vimgad  “Vimgad T Vitsg) 1<j< M -1 \4-2)2

where u;; 1 = u(ilAz, (j — 5)Ay), v, 1= v((i — 3)Az, jAy), then we get an integral
type scheme (2.3)(2.4) if we use the same notations ; ; 1, 0;_1 ;, u;;_1, v;_1 ; for the
discretized variables. Near the boundary, we use the third order accurate approxunatlons

_ 1 .
U1 = ;1 + E(Zuzo Bu; L+ u;2) (1<i<N) (2.5);
_ 1 .
ui’M_% — U’i, _% + ﬁ(QulI:M _ 3U’i,M—% + U’i,M—%) (]. S ] S N) (2.5)2
_ 1 ,
01 = v+ 7520, —Bvy;+vg) (1<j< M) (2.5)3
_ 1 .
Uyl =Uy_1;+ E(Qv}:,] 3oy 1+ vN_%’j) (1<j< M) (2.5)4

u£0 =ur(iAx,0),u M = ul (iAx, LY), voj = (0 JAY), vN] vt (LT, jAy).
On the boundary, @, v are averages of integration, e. g.,

1 ridy

Un - 1 — — 0 d 2.6
U’O,j—§ Ay /(j—l)Ay U( 7y) Y ( )

The integral type Scheme (2.3)-(2.5) for the continuity equation contains the following
advantages over the compact schemes (presented in “§3 of [12]” and “§2 of [8]”):
1. It has more physics meaning: u,_; ,_1 AyAt is the quantity that flows in through the

P 2
left edge of the element e; ...; v,_1 .AxAt is flow—out quantity through the upper egde.

1
_57.7 ~
Then (2.3) means the sum of the flow—in quantity is equal to the sum of the flow—out
quantity in the element e = ((1 — 1)Ax, iAzx) x ((j — 1)Ay, jAy);
2. The stream function can be obtained directly by
Yio =0, thij =11+, 1Ay, i=12. ,N-1j=12.,M-1 (2.7)
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;1 can be obtained from (2.4) (2.5);
3. Boundarv velocity affects the flow directly through the continuity equation;

Uij 1

4. At the boundary point where the velocity discontinues, the scheme decreases the error of
the compact scheme (3.8)(3.15) for the continuity equation. ( (3.8)(3.15) are “(2.8)(2.15)
of [8]7, “(3.8)(3.15) of [12]” ). For the driven flow problem in §6.3, u discontinues at
points (0,1) and (1,1).

3. STAGGERED MESH COMPACT DIFFERENCE SCHEMES

We consider the two dimensional unsteady viscous incompressible N-S equations
(1.1)(1.2) with

A(V) = (uuy + vuy — V(Ugy + Uyy), U0y + 00y — (Vg + vyy))T, (3.1)
Vp = (pe,py)’,divV = u, + v, (3.2)

3.1 Fourth Order

1 Accurate Compact Schemes on a 2D Staggered Mesh

For this kind of schemes, the derivatives, as well as the velocity and the pressure
themselves, are employed to be unknowns of the difference equations. For explicit schemes
and those that have no implicit compact difference, we can solve the derivatives ug, u,
from w first. The solution pattern is similar to the ADI method: in x and y directions,
solve the partial derivatives in x and y directions respectively. Consider a finite difference

scheme of (3.1)(3.2),

V’n—l—l V" ]
+ Ap(V")+ Vpp"™ =0, (3.3)
At
div, V" =0, (3.4)
here V" — (g0 o\T A. V. div, are finite difference forms of V. div on a uniform
here V (u o™y Ay, divy, are finite difference forms of A,V div on a uniform
grid:
(1) finite difference forms of the first derivatives u,,u, in A,(V') are
/“/ PR 42/// 1+’“ U - 1 — U |
i—1,j—3 ij—y | itlj—g  Yitlj—1 T Yieli-f 1<i< N -1 (3.5)
6 a 2Az P1<i<M o
!/ !/ !
u, 4!, . u, . o — .
ij—3 + ij—% + gty Yig+d T %3 1<i<N-1 PR
6 2Ay T 2<j<M-17 ez
A (X7 ava civnd law 44 (92
Uy, Ul: 111 ﬂh\v } alc Dlllllldrl LU \O U},
(2) finite difference forms of the second derivatives ug,, uy,, in A, (V):
2! 1 1Na" Lo, s D, [
Yicrg—3 T T il Ui T AW T Ui (2 a)
12 (Az)? ’ R
(I<i<N-1, 1<j<M)
U/,./. 3+10U/” 1+J,I./. 1 W - 3:2U 1iu.. 1 .
©J—35 2Y iy Za.]+§ _ ©]—35 2Y iy o Za]+§ 1 S (3 S N -1 (3 6)
12 (Ay)? P 2<j<M -1 2



Vyy, Uge 0 Ap (V') are similar to (3.6),
(3) for the derivative p, in Vpp,

\

+221)’ +I) D,

F) Z-i—l,j——

e
|
-
<
|
o=
ks
~
Q
mll—‘

-2 (3.7)

(4) compact difference for u, in div,V,(in this paper we mainly use another scheme for
div, V described in §2).

! !
Uia P20 0 bW U~ g g N -
24 - Az T1<j<M \2-S)

similar for v, in div,V in v,,
(5) for u in ww, m (V - V)V the interpolation is employed:
v LU 1+ T ,
i—1,j—3 hij—3 i—1,5+3 ity 1<i<
u@‘_l i = 2 s 4 _/ AT 1 (39)1
3] 4 1<y<M-1
2 2

o . . (AJ?) (uII)zj L+ (Ay) (uyy)lj—l 0<2< N (2 0.
uﬂ;,j_é - UW:,J-% 8 9 1 S] < M \Y-v )2

where g, u,,, can adopt the results of (3.6)(3.12)(3.13). v in vu, is similar.

(O) 10r Vt (9.0) adoptls tne nrst oraer accurate dalierence. A fOllI'th order accurate
Runge-Kutta method is given in §4.

Remark 3.1 If we change u,u’,i, Az to
ry
/ u(idz,y)dy, u, j, Ay,
(1-1)Ay

then (3.8) becomes (2.4); (with (2.2)), (3.15) becomes (2.5); with LHS and RHS reversed.

\

3.2 Difference Formulations Near the Boundary
Vir =Vr = (u',0")T on T = 9Q. Now we mainly describe difference formulations

[N 1 1.1 1.~ DA | s A n
n y T = U.
(D (2)oys = (—0)oyo1s )y = (—0D)xsys (15 < M) (3.10)
(1)2 uyaty=2Ayand y=LY—3Ay,
3“2,% + “;,5 Ui 3 — Ui Uipr s T 3“1,M—% Wi, M — Ui pg—3
3 A b n - 3 A b (3’11)
4 iL\y 4 iL\y

here u;o = ul (1Ax,0), u = ur(iA:ﬂ, LY);
v, at © = 2Az and 2 = L* — 3 Az similar,
(2)1 Uge at = ZAx:

Upyoy T 2Uy 1 Upjot — gyt
e T i iE 09T (<< M 3.12
3 IVARNNYY: tog-y)» 15 < M) (3.12)



i _ T _ T : 1
where u(),j_% - _(Uy )O,j—% = Uy (07 (.] - §)Ay)a
N ot e — T 10A . . ot o — L0OA . S0, ot o — TY _ 10A . cvn airnilan
Upy AL L — Ly 9 L\..l/, Uyy al y — 9 L\y alll Uyy al y — 1Ls 9 L\y alc Dlllllldrl,
_ 2
(2)2 uyy at y = 3AyY
n n
SRS N YN ST Nk AL SRS
- = - - 3 5 — = .
6 48 ¥3 b3 b2 3 (Ay)? ’
(1<i<N-1)
where ;4 = ufg;
9
Uyy at y = LY — %Ay, Upe ab T = %Ax and vy, at x = L* — %A:}: are similar,
(9 v ot o — A
\9) Pg at T = AT
pll _2p121+p;)1 P31 — pi i
J T3 J T3 J—3 T adTa )73 .
P+ = , (1< < M) (3.14)
I3 24 Az

e
Yy sliliar,

I
=~
|
b

py at v = L% — Aw, p, at y = Ay and p, at y

(4) u, in divV at z = JAz,(this is for (3.8)):

2u 2 ! + 15U/la]_l + UIg,]_l u].,]_l - UO,j_l .
1‘; 2 22 — 2Aq~ 2. (1<j< M), (3.15)
where u()’j_% = —(vg)ﬂﬂj_%; uy in divV at o = L* — J Az,
pe tn AN onoae o LA T o i 1 X7 o4 Ty LA it
Uy 111 aivy auv fy — 2;\ allt Uy 111 Jlv v av y — L 2uy Sliiiiial,
(5) boundary values of ugy, uy, in (3.9),: for j =1,2,..., M,
(tao)1 i1 = ((Ua)yj_1 = (Ua)o;-1)/Ax, (3.16)2
(uyy)od_% - (ugy)O,J—%, (3.16)3
where (u;); ;1 can be got from (3.5); (3.10), (us)e ;-1 = —(vy)o 1.

3.3 An Upwind Compact Diff
Alter the formulation (3.5); to

1 9 Uy q 1 +4u, .1 —Ddu, ;. 1
Sl Ao = b TR (i, 1 > 0) (3.17);
3 imbimy T 3 6AT PN T = R
- =
2 OUjyy j— L — HU; ;1 — 1,j—1
- ! . J 2 2y) 2 ? 5] 2
5 -1 + 3 Uit1,j-1 Az ,(if u; ;1 <0) (3.17),
for 1 <i< N—-1,1<j <M. Alter (3.5); similarly. Other formulations are same with
(20N (218 avennt (218N aléavad +4
\L)-U} \9Q lU}, cALCpPU \L)-J.U}Q 10C1CU LV
The difference between (3.17) and “(2.8)(2.9) of [11]” is F'(= u’) has no superscripts

C_|_7 and C77.



3.4 Truncation Errors of the Discretizations
From the Taylor expansion, the truncation error (LHS minus RHS) is

1 1
@ums)(Axf for (3.5);; %uxa(Ax)4 for (3.6)1;
17 . I A IS, W A 17 S (AN e (9 Q)
—576opx5 (Ax)" 10r (J.7); 5760 Ugs(AT) 10T (9.8);
1 :
384(5%4(A$)4 + (Sumyy(Ayc)Q(Ay)2 + 5uy4(Ay)4) for (3.9), (with (3.9)3)
1 ar A AN for (211). 1 ar (AP for (2 19).
6_4u/y4\uy} 1U1L \U.ll}, _wab \L\J/} 1U1L \L) lA}’
1 . 1 o
@uys(Ay)“ for (3.13); ﬁpﬁ(Aaﬁ)“ for (3.14);
1 1 1
Couga(Az)? for (3.15);  — ug(Ax)? for (3.16)y;  — _ugs(Ax)® for (3.17);
144 \ ) \ VAl 24 \ ) \ ]2 36 )
1 5 17 . 1 o
_Euxﬁl(Ax)A for (3.18); —%uyzx(Ay)‘* for (2.4)y; —muya(Ay)‘j for (2.5);.

4. THE RUNGE-KUTTA METHOD FOR TIME DISCRETIZATIONS OF
UNSTEADY PROBLEMS

Define f(V') = Au(V')+V;p, where p = p(V') satisfies div, (A, (V)+Vp) = 0. Thus
f is a function of V. The fourth order Runge-Kutta formulation for solving V;+ f(V') =
0 is:

n n n n % —n—f—% —n+l
v +1A;V L FV) 2 (VT )+62f(v )+ F V) w1)

where

At sl At _, il
Vi =V TRV, Y oy SEVT, V=V A (V ),

The Runge-Kutta method is widely used for time discretizations of high order ac-
curate numerical methods of time-dependent problems. But the conventional method
of intermediate boundary conditions has only first order accuracy'® for time-dependent
problems. The conventional method is

n+i —n+s —n+l
VP =V]ian VP = Viicehao Vo = Vie@enar (on D) (4.2)
We have proposed the following formulations in [12] and in the journal ‘Mathematica
I\Iumerica Si'ﬁica, (\Val 9N Na 1 1000 naoe KRN
\VUI. L/U, LY. l, lddU, l_}(hsc UU}-
At 0V
n+s __ n
V V + T( [aW] ,+:m/\+)7 (OI] F) (4 3)1
Z oy e
V' = (v )~ V™3, (onT) (4.3)
- t=(n+31)At ) n 2



—n+1
VvV = V|t:(n+1)At; (On F) (43)3
M sl AT (A DN Lo WO\ (oA e T1NY o T aaeh AT T PR PR I Koo\ _roA\ £
nemark 4.1 (4.0) approximates “(22)—(24) ol [1U]” ai least tnird oraer accuratery. —(22)—(24) oI
[10]” are
st
v = 9(t) + 5 9'(1) (4.4)
5t 5t)?
=)+ 5 o0+ g0 (4.4
2 3
23— a4 L Stal (4) L (6t) a4 L (6t) Al (4 (4 4\,
Yo J\v) T Yry vy 2 g \v) 1 4 Jd \Y) \=x)3

see [10] for details. In fact, (4.4); is identical with (4.3);. If we use same notations as (4.4), then RHS
of (4.3)5 is 2g(t + $6t) — v§ = v§ + O((6t)%), RHS of (4.3)3 is g(t + 6t) = v§ + O((6t)*). Therefore, (4.4)
and (4.3) are third order accurately approximate.

Parmank A9 Wa 1100 tha itar
ICliiarln .4 VvC udl vl 1uCL

a {
s {
examples (§6) with V* = V" — 8LA, (V") for V"3, V* = V7 — Bt 4,(
=+ i1
V" — AtA, (V' 2) for V
Remark 4.3 To solve the pressure, we can also use the pressure Poisson equation method (5.7)(3.1)

,_
<
)

T
]
[}
)
=
[
)

with V* same as those above.
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5. THE ITERATIVE PRESSURE POISSON EQUATION METHOD

To solve the pressure, we use the iterative pressure Poisson equation method presented

‘;ﬂ [1 ‘)‘l 'if 11404 ]’lﬂ ‘Iﬂf‘Y‘QmﬂY\f f\'r Q 1p) QQ‘I‘IY‘Q fhﬂ f"]1'FrﬂT‘QY\f‘ﬂ ‘F two en QQQ‘;‘YQ
111 lLHJ 11U UudUTO u;; 11101 C11i01iv UL luu., PLUSoSULT, viiT UiiiTiT1ilo Ol TWO Su oOLY T

pptt and pptl), instead of the pressure p"*! as an unknown variable, see (5.3).
It has the following advantages:
1. it can ensure the discrete continuity equation satisfied as exactly as expected(see

(5.4));

2. V% in the Poisson equation (5.3) can adopt a lower order accurate operator, e. g.,

for a 2D 4th order accurate compact scheme, V2 can use the 5-point central difference.
rectlv_ (for a 2D nrohlem WQ

LUNMLIU oou \tVUlL Q4 JiL/ pPLUMITLLL,

J. 1U LOl WU QppPiitu UU vl U0 Uliuivupiviial pJ

can adopt a 7T—point central difference),

For the explicit discrete form (1.3)(1.4), the pressure Poisson equation can be
written as:

T
Vip'tt = Edlth (5.1)

where V* = V" — AtA,(V"), At is the time step. Both LHS and RHS of (5.1) have
met

various forms, corresponding to a kind of dlfferent pressure P01sson equatlo methods,

271 TQT  TQ1 inie o i ] a pressure PR
L,l 2] [O]- L J plUpUqu plUbbUlU FUlbbUl

(5.5)-(5.7)).

The iterative pressure Poisson equation method:

Take n—step values as initial: V{7 = V", pi*h = p", calculate V11, pifi, k =

0,1,2,... iteratively:
(1) calculate the velocity V|
Vn+1 - V*
’““Ait + Vit =0, (where V¥ = V" — AtA,(V") ), (5.2)

(2) solve the pressure pZIll with an approximate Poisson equation (first solve pZ:[% pZ“

as one unknown variable):

Vit - =

(3) set V"' = VIl when the following inequality valid

tdlthZill (5.3)

. 41

ldiva V32| < e (5.4)

where € > 0 is a small quantity given beforehand, || - || is a norm. € can be O(h*) when
(2.3)(2.4) are of fourth order accuracy.

simple difference operator. e. g., for a 2D compact scheme,
central difference.

The iterative algorithm above is a means of solving the original scheme, such as the
compact scheme. It does not change the numerical solution. (In this point, it just likes
the Gauss—Seidel method for a system of linear equations).
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Remark 5.1 The pressure Poisson equation (presented in [8]) that satisfies the equivalency
is

1
Dh(vhpn+17070) = A—ch(V*aV?HaVV?H) (55)

this equation is derived from
Dp(V" — aNS,,, VI vveth) =0 (5.6)
where NSy, is the left hand side (LHS) of the discrete momentum equations (1.3), and

~ /xn+l x-n+tl
Lp

Vi,V

~I

(@23
NI

41\ n /
r )=V (

Vi
is rewritten from the discrete continuity equation (1.4) with the boundary conditions V|
VL WV = OVETL Here VI = Vil pan VVET = WVl
It is obvious that (5.6)(1.3) ar equwalent to (5.7 (1.3 . The equivalent equ ations (5 6)(1.
oc1r 11 }'I

can }'\a annlied to the fonr cton tta mothod nrﬂ' V* valued
can appiled 16 10e I0ur Siep iourvil \Utta IMetnoca wiiil v vaiuea
n Remark 4.2.

PPN Arrang 1 €92 S.-1 0o
J_IIU LUIllpdbb bbllU L1ICS 111 §o alld §4

oW
wn ~

ney can
/1 0\

i only
use the components which can get from Vir = V' and the continuity equation (1.2). Those
components are V(Vp-n) and V(Vp - 7) -7, here n and 7 are the unit normal and tangent
vectors on I'. In fact, (3.8) uses only V(V-n)-n. (2.3)-(2.5) (and other schemes generally)
do not use VVp, i. e., no derivative boundary conditions in the discrete continuity equation.

RHS of (5.5) is A,dlth* (see (1.3) for V*) with V*|p = VI VV*|r = VYT LHS
of (5.5) is divy(Vpp"th) with Vyp"H|p = 0, V(Vp"t)|r = 0. These numerical boundary

conditions do not affect the result of p" ™! (“§6.3.1 of [9]” explained details of this for the MAC

arhomao)
SCACINIC ).

5%

6. NUMERICAL COMPUTATIONS

6.1 A Linear Scalar Case (with the compact scheme in §3)
We consider the scalar hyperbolic equation ( (29)—(31) in [10] )

ur +u, =0, u(0,t) =g =sin(27(—t)),u(zr,0) = sin(27x) (6.1)

1 N

Err(N) = N\ > (ut — u(iAz, nAt)?) (6.2)

_1

N: grid number, Az = 1/N, At = CFLAz,
Conv. Rate: convergence rate (or convergence order):

lno
iU

(BErr( N/2) /Err( N (6.3)
62\J_J J.J.\ \U-U}

LL\.LV/Q//J_J .LV}}
Numerical results in the following table are obtained with the compact scheme (3.5);,
Runge-Kutta method (4.1). (0.66498E-7 means 0.66498x1077)

TABLE 1 (CFL=At/Az = 1,¢t = 1)

Compact A Compact B Compact C
N Err(N) Conv Rate Err(N) Conv Rate Err(N) Conv Rate
256  0.66498E-7 0.53563E-7 0.60102E-7

512 0.42889E-8 3.9546 0.33820E-8 3.9853 0.38073E-8 3.9806
1024 0.27997E-9 3.9373 0.21243E-9 3.9928 0.24083E-9 3.9827
2048 0.1872E-10 3.9028 0.1331E-10 3.9965 0.1529E-10 3.9774
4096 0.1298E-11 3.8507 0.8328E-12 3.9983 0.9800E-12 3.9637
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Compact A: with the conventional boundary condition (4.2);
Compact B: with the boundary condition (4.4), (i. e., “(22)—(24) of [10])”;
Compact C: with the boundary condition (4.3), (proposed by us).

ancliiginna af +thic linaar ainala acn an ealanlatioang:
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1. all these calculations obtain high order accurate solutions;

2. the convention method (“Compact A”) is not bad for this case;

3. “Compact B” is a little better than “Compact C”.

For a two dimensional nonlinear case, the conclusions are not very same. See next
66.2.

6.2 Two Dimensional Traveling Wave Calculations
A simple flow is considered for which the exact solution is known. The following is a
2D traveling wave solution of Navier-Stokes equations:

w=1+2cos(27(x

N
&
—~~
(@)
1SN
N—

p = (—cos(4n(x —t)) — cos(4r(y — t)))e 17 ¥
A N T A0 O (1N (01 (T Ty 1)
y—\U/,U) |F,l—UlL,lL—\U,l})\\U,l), \_LJ — Ly —l),
u(x,y,0) =14 2cos(2mx) sin(2my)
v(z,y,0) =1 — 2sin(27x) cos(2my)
R
+ R rat rat
Bi(9) = | 32 () U g, ST 09
1=1,0=
where

1 1

u?;.afclurate = u(iAz, (j — §)Ay, nAt), v?_’afc;lrate =v((i — §)Ax,jAy, nAt).
9, 2 2,

N: grid number, Az = Ay = 1/N, At = CFLAz,

Conv. Rate: convergence rate (or convergence order), see (6.3).

Numerical results in the following tables 2 and 3 are obtained with the compact scheme
(U_v) (3.16). Runce—Kutta method (4 1\ Re=100 and 500 respec vv]

\YrdU )y 1ULISUT IR ULLGY 1LIT VLIV | T AV — 1 Qi U > 2™ 01

TABLE 2 (u.= 7. Re=100)

) =YY ~

Compact A Compact B Compact C
N dt/dx  Err(N) Conv Rate Err(N) Conv Rate Err(N)  Conv Rate
32 0.4 0.414E-4 0.204E-4 0.202E-4
64 0.2 0.125E-5 0.755E-6 0.751E-6
32 0.16  0.139E-4 0.139E-4 0.139E-4

64 0.16 0.820E-6 4.0813 0.740E-6 4.2347 0.738E-6 4.2368
128 0.16  0.316E-6 1.3750 0.416E-7 4.1518 0.415E-7 4.1536
32 0.14 0.138E-4 0.139E-4 0.138E-4

64 0.14 0.757E-6 4.1904 0.735E-6 4.2361 0.734E-6 4.2374
128 0.14  0.173E-6 2.1337 0.413E-7 4.1530 0.412E-7 4.1545
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Compact A: with the conventional boundary condition (4.2);
Compact B: with the boundary condition (4.4), (i. e., “(22)—(24) of [10]”);
Compact C: with the boundary condition (4.3), (proposed by us).

TABLE 3 (t=0.7, Re=500)

Compact A Compact B Compact C
N dt/dx  FErr(N) Conv Rate FErr(N) Conv Rate Err(N) Conv Rate
32 0.2 0.292E-4 0.291E-4 0.291E-4

64 0.2 0.160E-5 4.1878 0.158E-5 4.1991 0.158E-5 4.1987
128 0.2 0.111E-6 3.8528 0.863E-7 4.1975 0.861E-7 4.1992
256 0.2 0.354E-7 1.6510 0.473E-8 4.1889 0.471E-8 4.1923

o

Conclusions from tables 2 and 3: 1. for fine spatial grids, the convention method
(“Compact A”) got lower accuracy; 2. “Compact B” and “Compact C” obtain high order
accuracy, ‘Compact C” is slightly better.

6.3 Computations of the Driven Flow in a Square Cavity
We consider the unsteady viscous incompressible fluid flow problem driven by the

thmmnov force in a two dimensional unit sguare P;nn‘rv The control pqnnhnnq are the

23 w) Sy W 4 120 Ll

unsteady viscous incompressible Navier-Stokes equations (3.1)(3.2). Computation area:
0 <z <1,0<y<1. Boundary velocity:

0,007 for0<z<l,y=0andz=0,0<y<1 (6.6)
{ andz=1,0<y <1

Az =1/N,Ay = 1/M,M = N, Re=1/v. V% in (4.3) adopts the five-point central
difference.

In all calculations, we use the iterative pressure Poisson equation method (5.2)—
(5.4) for the pressure. To solve (5.3), we use the multigrid method one loop (grid from
fine to coarse, then from coarse to fine), thus the algorithm likes an integrated multigrid
procedure. (for such a ‘multigrid method’, V% is the ‘fine grid’, V% is the ‘coarse grid’
(in the ‘first—grid’)), (for the multigrid method, if we change words ‘fine grid’ to ‘more
accurate method’, words ‘coarse grid’ to ‘less accurate method’, then it might be called
a generalized multigrid method); The steady solutions are obtained when ¢ large enough.
We denote

Scheme CD-V: the staggered mesh compact difference-finite volume scheme (2.3)-
(2.5) (3.5)(3.7) (3.9)—(3.15) (3.16)

Scheme CD: the staggered mesh compact difference scheme (3.5)—(3.16)

We comnared the numerical results of CD-V with those of Ghia’s in [2 ]

VUL PRI T VAT Uil 1USUAUS 1vii vaaidUBT Vi A BV

(v = 0.01). The accuracy of Ghia’s with N = 128 is better than the new scheme C -V
with N = 8, but much worse than CD-V with N = 16. This shows the new scheme’s
fourth order accuracy.
For Re=1000, N = 256, scheme CD-V, besides ty,, some selected (j L UN/2j— 1) are
(14,—0.17580); (28,—0.31345); (43,—0.38799); (44,—0.38852); (45,—0.38849); (80,—0.24776); (112,—0.12531);
(

(1,007 for0<z<l,y=1
Vi =

or Re=

1L e

o}

(144,—0.00142); (176,0.13136); (208,0.28591); (245,0.48211); (246,0.50441); (247,0.53114); (252,0.73939),
some selecte r‘] (7 2. _\ are (14.0.25758): (27.0.3 A08): (40.0.37681): (41.0.37605): (42.0.37675):
uuuuuuuuuuuuu (i, 0,1 v/2) are (14,0.25758); (27,0.31498); (10,0.37681); (11,0.37695); (12,0.37675);
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(64,0.30944);

(224,—0.46259);

(96,0.16270);

(232,—0.525314); (233,

(128,0.02790);
—0.526999);

(160,—0.10862);

(192,—0.25114);
(234,—0.526446);

(240,—0.46593); (248,—0.24472).

Extrema in the last eight lines of tables 4 and 5 are obtained from interpolation of

nnn anlas
vuv

~f
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‘7 and (T

\_/L}' aliu v/,
TABLE 4 Extrema of velocity profiles along centerlines (Re=1000)
U/,(fiiO"B) Ymin Ur(r‘?axo %) Tmax Ur(rﬁiowr)) Lmin

Ghia [2] -0.3829 0.171875  0.37095 0.15625 —-0.51550 0.90625
Zhang [7] -0.39009 0.16992 0.37847 0.15820 —-0.52839 0.90820
Bruneau [1] -0.3764 0.1602 0.3665 0.1523 —-0.5208 0.9102
CD-V,N=256 -0.3885729 0.1716965 0.3769494 0.1578361 —0.5270795 0.9092451
CD-V,N=128 -0.3885091 0.1717298 0.3768988 0.1578476 —0.5269636 0.9092524
CD-V,N=64  -0.3874597 0.1722462 0.3759533 0.1580876 —0.5250540 0.9090746
CD-V,N=32  -0.3818458 0.1773832 0.3709188 0.1603107 —-0.5114055 0.9051549
CD, N=256 -0.3840607 0.1724296 0.3721873 0.1586994 —0.5213952 0.9089328
CD, N=128 -0.3795204 0.1732002 0.3674140 0.1595922 -0.5156458 0.9086300
CD, N=64 -0.3705614  0.1751717 0.3585948 0.1614637 -0.3043853 0.9078775
(‘n N=32 -0.3519381 0.1822162 0.3401250 0.1667745 —0.4761842 0.9032001

* Extrema of Ghial?!, Zhang!” and Bruneaul' in tables 4 and 5 are obtained on grid points, absolute

values of these extrema should be a little smaller
TABLE 5 Extrema of stream function (Re=1000)

Primary vortex
Ymin ( location x,y )

Secondary vortex (BL)
Ymax ( location z,y )

Secondary vortex (BR)
Ymax ( location z,y )

Ghia [2] —-.117929 (.5313,.5625) .000231129 (.0859,.0781)  .00175102 (.8594,.1094)
Zhang [7]  —.1193 ( 5313,.5664) .000235 ( 0820, 0781) .00174 (.8633,.1133)

Bruneau[i] -.1163 (.5313,.5586) .000325 (.0859,.0820) 00191 (.8711,.1094)

CD-V,256  —.118938(.530789,.56524) .0002335(.08327,.078095) .0017297(.86404,.11181)
CD-V,128  —.118925(.530785,.56526) .0002333(.08325,.078105) .0017294(.86345,.11149)
CD-V, 64  -.118691(.530796,.56552) .0002309(.08319,.077927) .0017238(.86414,.11208)
CD-V, 32  —-117567(.530532,.56810) .0002108(.08318,.076787) .0017243(.86208,.11363)
CD,N=256 - 117741( 531154,.56559) .0002234(.08298,.077663) .0016898(.86449,.11183)
CD,N=128 -.116541(.531521,.56596) .0002135(.08265,.077228) .0016501(.86495,.11185)
CD, N=64 —.114019(.532291,.56689) .0001930(.08182,.076336) .0015680(.86600,.11210)
CD, N=32 -.109233(.533577,.57032) .0001483(.08038, 073383) .0014351(.86615,.11340)

At two upper corner points (0,1) and (1,1), u discontinues, the finite volume scheme
decreases the errors of the compact scheme. To show this, we use the result of the scheme
CD with N = 256 as an “accurate” solution, interpolate it to a coarse grid N; x Ny,
use four grid point (perpendicular for u, horizontal for v) polynomial interpolation, get
For Re=1000, at left upper corner, i = 1,j = Ny: divi®VV(y,),

V(Nl) leh1 V( 1)
—_1 2n0Q 12.42 for N, = 64: 2.352. —17.61 for N, = 128: at riocht 11hner carner
L. uuu, 14L.174 1UL ivl -_ , A.UUA, 16.U1L 1UlL .LVl -_ lAU, au L1511LA ulJlJCJ. vulll UJ.,

i = Np,j = Ny, they are 1.729, 12.99 for N; = 64; —1.619, 18.66 for N; = 128. For
Re=7500, left-upper: i = 1,j = Ny, they are 0.03094, —10.21 for N;=64; —1.974, —23.84
for Ny = 128; right-upper: i = Ny,j = Ny, they are —3.491, 4.877 for N; = 64; 7.565,
31.83 for Ny = 128.  divi®VV(y) is defined by (2.3)-(2.5), div5PV(y) is defined by
(3.8)(3.15), hy = 1/N;.

f:lT"I‘7Dn

AL Cii

For the square—
square

that beyond Re=R, with 50()0 <R < 75()0 there is not a steady laminar solution an
more and the transition to Luroulence occurs when small eddies develop along the walls.

(pp. 408-412 of [1]). Liul** gets the same conclusion. While we use the same boundary

cay

121 uniTvu

condition (6 6\ Bruneau

R
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condition (6.6) and Re=7500, N = 256, schemes CD-V and CD, after a period calculation,
the numerical solutions approximate steady. Zhangl”) and Ghial?! also obtained steady
solution.

T decide whethor tha
10 UClluf wiiculicr uvli€ S01

Alaads
N =512, alter (3.16)5 to (3.18). The solution is still not convergent so far. Its amplitude
of the velocity at the geometric center is now only about 0.04 percent of that in [11]. We
will continue to study on this, with larger N, different boundary formulations, nonuniform
gridPPI14I13] - We are also performing the calculation for Re=10000, N = 512.

IN

oh o calanla
L 11€ CalCula

on onld K
uvioil sS1noula v

A~ nnt woa atart + MR T 12
a L, WE Stalt © 1011 Wiunl

7. CONLUSIONS

A new scheme for the incompressible Navier-Stokes equations is proposed. It uses
fourth order accurate staggered mesh compact differences or third order accurate stag-
gered mesh upwind compact differences for the momentum equations, and a fourth order
accurate integral type finite volume scheme for the continuity equation (truncation errors
are given in §3.4). A new set of intermediate boundary conditions of the Runge-Kutta
method is described. We use these boundary conditions (“C”), those given by [10] (“B”)
and the convention method (“A”) for a linear scalar equation. All calculations for this
case obtain high order accurate solutions, “A” is not bad, “B” is a little better than
“C”. For a 2D traveling wave calculation, “B” and “C” obtain higher than fourth order
accuracy. While “A” gets lower order accurate. “C” is slightly better than “B”.

Truncation errors of the discretizations are given in §3.4.

The compact difference—finite volume scheme (CD-V) proposed here achieves high
order accuracy for the incompressible fluid flows, its numerical results are better than
those obtained by the staggered mesh scheme (CD) (see tables 4 and 5, for Re=1000),
and very much better than those of Ghia’s in [2], and much better than the results of
Bruneau’s in [1].

At the location where the boundary velocity discontinues, the finite volume scheme
decreases the error of the compact scheme,see the paragraph under table 5.

For Re=7500, we get steady solutions. This supports the conclusion that the Hopf
bifurcation point R, is not lower than 7500. For Re=7500, when there is a perturbation
for a steady result, our numerical solution approximates the convergent pattern with
periodical oscillations with the time, the amplitude is gradually vanish, the period is
about 6.6.
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